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Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error sense if

limN→∞ E
[
|m − m̂(N)|2

]
= 0

Question: under what condition will this be satisfied?
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Properties of R

R is Hermitian, i.e., RH = R

Proof r(k) , E [u[n]u∗[n − k]] = (E [u[n − k]u∗[n]])∗ = [r(−k)]∗

Bring into the above R, we have RH = R

R is Toeplitz.
A matrix is said to be Toeplitz if all elements in the main diagonal
are identical, and the elements in any other diagonal parallel to the
main diagonal are identical.
R Toeplitz ⇔ the w.s.s. property.
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Properties of R

R is non-negative definite , i.e., xHRx ≥ 0, ∀x
Proof
Recall R , E

[
u[n]uH [n]

]
. Now given ∀x (deterministic):

xHRx = E
[
xHu[n]uH [n]x

]
= E

(xHu[n])︸ ︷︷ ︸
|x | scalar

(xHu[n])∗

 =

E
[
|xHu[n]|2

]
≥ 0

eigenvalues of a Hermitian matrix are real.
(similar relation in FT analysis: real in one domain becomes

conjugate symmetric in another)

eigenvalues of a non-negative definite matrix are non-negative.
Proof choose x = R’s eigenvector v s.t. Rv = λv ,
vHRv = vHλv = λvHv = λ|v |2 ≥ 0 ⇒ λ ≥ 0
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Properties of R

Recursive relations: correlation matrix for (M + 1)× 1 u[n]:
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(4) Example: Complex Sinusoidal Signal

x [n] = A exp [j(2πf0n + φ)] where A and f0 are real constant, φ ∼
uniform distribution over [0, 2π) (i.e., random phase)

We have:
E [x [n]] = 0 ∀n

E [x [n]x∗[n − k]]
= E [A exp [j(2πf0n + φ)] · A exp [−j(2πf0n − 2πf0k + φ)]]
= A2 · exp[j(2πf0k)]

∴ x [n] is zero-mean w.s.s. with rx(k) = A2 exp(j2πf0k).
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Example: Complex Sinusoidal Signal with Noise

Let y [n] = x [n] + w [n] where w [n] is white Gaussian noise
uncorrelated to x [n] , w [n] ∼ N(0, σ2)

Note: for white noise, E [w [n]w∗[n − k]] =

{
σ2 k = 0

0 o.w .

ry (k) = E [y [n]y∗[n − k]]
= E [(x [n] + w [n])(x∗[n − k] + w∗[n − k])]
= rx [k] + rw [k] (∵ E [x [·]w [·]] = 0 uncorrelated and w [·] zero mean)

= A2 exp[j2πf0k] + σ2δ[k]

∴ Ry = Rx + Rw = A2eeH + σ2I, where e =


1

e−j2πf0

e−j4πf0
...

e−j2πf0(M−1)
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Rank of Correlation Matrix

Questions:

The rank of Rx = 1
(∵ only one independent row/column, corresponding

to only one frequency component f0 in the signal)

The rank of Rw = M

The rank of Ry = M
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Filtering a Random Process
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